本文共 16535 字,大约阅读时间需要 55 分钟。
基于python对淘宝模特个人信息进行筛选爬取,数据清洗,持久化写入mysql数据库.使用django对数据库中的数据信息筛选并生成可视化报表进行分析。
数据爬取,筛选,存库:
# -*- coding:utf-8 -*- import requestsfrom bs4 import BeautifulSoupimport sysimport rereload(sys)sys.setdefaultencoding('utf-8')import MySQLdbimport chardetconn= MySQLdb.connect( host='localhost', port = 数据库端口, user='root', passwd='数据库密码 db ='xxnlove', charset='utf8' )cur = conn.cursor()cur.execute("create table model(name text(225),age varchar(10),blood varchar(10),school text(225),height varchar(10),weight varchar(10),Measurements text(225),cup varchar(20),location text(225))ENGINE=InnoDB DEFAULT CHARSET=utf8;")#CREATE DATABASE gmtdb DEFAULT CHARACTER SET utf8mb4;for num in range(521,1314): try: URL = 'http://mm.taobao.com/json/request_top_list.htm?page=%d' % num #print "现在爬取的网站url是:" + URL response = requests.get(URL) response.encoding = 'gb2312' text = response.text soup = BeautifulSoup(text, 'lxml') for model in soup.select(".list-item"): try: model_id = model.find('span', {'class': 'friend-follow J_FriendFollow'})['data-userid'] json_url = "http://mm.taobao.com/self/info/model_info_show.htm?user_id=%d" % int(model_id) response_json = requests.get(json_url) response_json.encoding = 'gb2312' text_response_json = response_json.text soup_json = BeautifulSoup(text_response_json, 'lxml') #print "***********************************" + model.find('a', {'class': 'lady-name'}).string + "*********************************" #print "模特的名字:" + model.find('a', {'class': 'lady-name'}).string name = model.find('a', {'class': 'lady-name'}).string #print "模特的年龄:"+ model.find('p', {'class': 'top'}).em.strong.string age = model.find('p', {'class': 'top'}).em.strong.string blood = soup_json.find_all('li', {'class': 'mm-p-cell-right'})[1].span.string # if blood is None: # blood = "None" school = soup_json.find_all('li')[5].span.string height = soup_json.find('li', {'class': 'mm-p-small-cell mm-p-height'}).p.string weight = soup_json.find('li', {'class': 'mm-p-small-cell mm-p-weight'}).p.string Measurements = soup_json.find('li', {'class': 'mm-p-small-cell mm-p-size'}).p.string location = model.find('p', {'class': 'top'}).span.string cup = soup_json.find('li', {'class': 'mm-p-small-cell mm-p-bar'}).p.string sqli="insert into model values(%s,%s,%s,%s,%s,%s,%s,%s,%s)" cur.execute(sqli,(name,age,blood,school,height,weight,Measurements,cup,location)) #print "罩杯:" + soup_json.find('li', {'class': 'mm-p-small-cell mm-p-bar'}).p.string ''' print "生日:" + soup_json.find('li', {'class': 'mm-p-cell-left'}).span.string blood = soup_json.find_all('li', {'class': 'mm-p-cell-right'})[1].span.string if blood is None: blood = "无" print "血型:" + blood print "学校/专业:" + soup_json.find_all('li')[5].span.string print "身高:" + soup_json.find('li', {'class': 'mm-p-small-cell mm-p-height'}).p.string print "体重:" + soup_json.find('li', {'class': 'mm-p-small-cell mm-p-weight'}).p.string print "三围:" + soup_json.find('li', {'class': 'mm-p-small-cell mm-p-size'}).p.string print "罩杯:" + soup_json.find('li', {'class': 'mm-p-small-cell mm-p-bar'}).p.string print "鞋码:" + soup_json.find('li', {'class': 'mm-p-small-cell mm-p-shose'}).p.string print "模特所在地:"+ model.find('p', {'class': 'top'}).span.string print "模特的id:"+ model.find('span', {'class': 'friend-follow J_FriendFollow'})['data-userid'] print "模特的标签:"+ model.find_all('p')[1].em.string print "模特的粉丝数:"+ model.find_all('p')[1].strong.string print "模特的排名:"+ [text for text in model.find('div', {'class': 'popularity'}).dl.dt.stripped_strings][0] print model.find('ul', {'class': 'info-detail'}).get_text(" ",strip=True) print "模特的个人资料页面:" +"http:"+ model.find('a', {'class': 'lady-name'})['href'] print "模特的个人作品页面:" +"http:"+ model.find('a', {'class': 'lady-avatar'})['href'] print "模特的个人头像:" + "http:" + model.find('img')['src'] print "***********************************" + model.find('a', {'class': 'lady-name'}).string + "*********************************" print "\n" ''' except: print "error" except: print num + "page is error"cur.close()conn.commit()conn.close()
数据库结构:
写入数据库中的模特记录数量:
写入数据库中模特信息部分图:
django 实现图表展示:
#coding:utf-8# Create your views here.from django.shortcuts import render,render_to_responsefrom django.http import HttpResponse,HttpResponseRedirectimport MySQLdbimport sysimport reimport jsonimport jiebafrom operator import itemgetterfrom pytagcloud import create_tag_image, make_tagsimport randomimport time import smtplibfrom email.mime.text import MIMETextreload(sys)sys.setdefaultencoding('utf-8')conn= MySQLdb.connect( host='localhost', port = 端口, user='root', passwd='密码', db ='xxnlove', charset='utf8' )def receive_message(request): if request.method == 'POST': name = request.POST['name'] email = request.POST['email'] subject = request.POST['subject'] message = request.POST['message'] cur = conn.cursor() sql = "insert into message values(%s,%s,%s,%s)" cur.execute(sql,(name,email,subject,message)) cur.close() conn.commit() conn.close() return render_to_response('index.html') def send_email(request): _user = "961769710@qq.com" _pwd = "**************" _to = "961769710@qq.com" msg = MIMEText("Test") msg["Subject"] = "don't panic" msg["From"] = _user msg["To"] = _to try: s = smtplib.SMTP_SSL("smtp.qq.com", 465) s.login(_user, _pwd) s.sendmail(_user, _to, msg.as_string()) s.quit() return HttpResponse("邮件发送成功") except smtplib.SMTPException,e: return HttpResponse("Falied,%s"%e )def create_pictures(request): cur = conn.cursor() sql = "select school from model " cur.execute(sql) rows = cur.fetchall() cur.close() conn.commit() conn.close() fclist = [] for row in rows: fclist.append(row[0].encode("utf-8")) fcstr = " ".join(fclist) wg = jieba.cut_for_search(fcstr) wd = {} nonsense = [u"我的", u"什么", u"你好"] for w in wg: if len(w) < 2: continue elif w in nonsense: continue try: str(w) continue finally: if w not in wd: wd[w] = 1 else: wd[w] += 1 swd = sorted(wd.iteritems(), key=itemgetter(1), reverse=True) swd = swd[1:100] tags = make_tags(swd,maxsize = 100) create_tag_image(tags, './modles/static/1.jpg', #background=(0, 0, 0, 255), size=(500, 300), fontname="STKAITI")# cur.close()# conn.commit()# conn.close() return render(request,'index.html')def cloud(request): return render(request,'cloud.html')def index(request): return render(request,'index.html')def search(request): if request.method == 'POST': modelname = request.POST['name'] sql = "select * from model where name='%s'" % modelname cur = conn.cursor() try: search = cur.execute(sql) info = cur.fetchmany(search) name = info[0][0] age = info[0][1] school = info[0][3] school = ''.join(school.split()) height = info[0][4] weight = info[0][5] Measurements = info[0][6] return render(request, 'index.html', {'name': name,'age': age,'school':school,'height':height,'weight':weight,'Measurements':Measurements}) except: prompt = "sorry: 数据库中没有 "+modelname+" 这个模特的信息" return render(request, 'index.html', {'prompt': prompt}) cur.close() conn.commit() conn.close() else: return HttpResponse('提交的方式不是post')def show(request): cur = conn.cursor() agedata = [] category = [] for i in range(10,40): category.append(i) age = i sql = "select count(*) from model where age='%s'" % age age = cur.execute(sql) i = int(cur.fetchmany(age)[0][0]) agedata.append(i) return render(request,'show.html',{'category':category,'agedata':agedata}) cur.close() conn.commit() conn.close()def area(request): cur = conn.cursor() citydict = {'jianxi':'南昌市|赣州市|上饶市|吉安市|九江市|新余市|抚>州市|宜春市|景德镇市|萍乡市|鹰潭市|江西', 'beijin':'北京', 'guangdong':'东莞市|广州市|中山市|深圳市|惠州市|江门市|珠海市|汕头市|佛山市|湛江市|河源市|肇庆市|清远市|潮州市|韶关市|揭阳市|阳江市|梅州市|云浮市|茂名市|汕尾市|广东', 'shandong':'济南市|青岛市|临沂市|济宁市|菏泽市|烟台市|淄博市|泰安市|潍坊市|日照市|威海市|滨州市|东营市|聊城市|德州市|莱芜市|枣庄市|山东', 'jiangsu':'苏州市|徐州市|盐城市|无锡市|南京市|南通市|连云港市|常州市|镇江市|扬州市|淮安市|泰州市|宿迁市', 'henan':'郑州市|南阳市|新乡市|安阳市|洛阳市|信阳市|平顶山市|周口市|商丘市|开封市|焦作市|驻马店市|濮阳市|三门峡市|漯河市|许昌市|鹤壁市|济源市|河南', 'shanghai':'松江区|宝山区|金山区|嘉定区|南汇区|青浦区|>浦东新区|奉贤区|徐汇区|静安区|闵行区|黄浦区|杨浦区|虹口区|普陀区|闸北区|长宁区|崇明县|卢湾区|上海', 'hebei': '石家庄市|唐山市|保定市|邯郸市|邢台市|河北区|沧州市|秦皇岛市|张家口市|衡水市|廊坊市|承德市|河北', 'zhejiang':'温州市|宁波市|杭州市|台州市|嘉兴市|金华市|>湖州市|绍兴市|舟山市|丽水市|衢州市|浙江', 'shanxi':'西安市|咸阳市|宝鸡市|汉中市|渭南市|安康市|榆>林市|商洛市|延安市|铜川市|陕西', 'hunan':'长沙市|邵阳市|常德市|衡阳市|株洲市|湘潭市|永州市|岳阳市|怀化市|郴州市|娄底市|益阳市|张家界市|湘西州|湖南', 'chongqing':'江北区|渝北区|沙坪坝区|九龙坡区|万州区|永川市|南岸区|酉阳县|北碚区|涪陵区|秀山县|巴南区|渝中区|石柱县|忠县|合川市|大渡口区|开县|长寿区|荣昌县|云阳县|梁平县|潼南县|江津市|彭水县|綦江县|璧山县|黔江区|大足县|巫山县|巫溪县|垫江县|丰都县|武隆县|万盛区|铜梁县|南川市|奉节县|双桥区|城口县|重庆', 'fujian':'漳州市|厦门市|泉州市|福州市|莆田市|宁德市|三明市|南平市|龙岩市|福建', 'tianjin':'和平区|北辰区|河北区|河西区|西青区|津南区|东丽区|武清区|宝坻区|红桥区|大港区|汉沽区|静海县|塘沽区|宁河县|蓟县|南开区|河东区|天津', 'yunnan':'昆明市|红河州|大理州|文山州|德宏州|曲靖市|昭通市|楚雄州|保山市|玉溪市|丽江地区|临沧地区|思茅地区|西双版纳州|怒江州|迪庆州|云南', 'sichuan':'成都市|绵阳市|广元市|达州市|南充市|德阳市|广安市|阿坝州|巴中市|遂宁市|内江市|凉山州|攀枝花市|乐山市|自贡市|泸州市|雅安市|宜宾市|资阳市|眉山市|甘孜州|四川', 'guangxi':'贵港市|玉林市|北海市|南宁市|柳州市|桂林市|梧州市|钦州市|来宾市|河池市|百色市|贺州市|崇左市|防城港市|广西', 'anhui':'安徽|芜湖市|合肥市|六安市|宿州市|阜阳市|安庆市|马鞍山市|蚌埠市|淮北市|淮南市|宣城市|黄山市|铜陵市|亳州市|池州市|巢湖市|滁州市', 'hainan':'三亚市|海口市|琼海市|文昌市|东方市|昌江县|陵水县|乐东县|保亭县|五指山市|澄迈县|万宁市|儋州市|临高县|白沙县|定安县|琼中县|屯昌县|海南', 'jiangxi':'南昌市|赣州市|上饶市|吉安市|九江市|新余市|抚州市|宜春市|景德镇市|萍乡市|鹰潭市|江西', 'hubei':'武汉市|宜昌市|襄樊市|荆州市|恩施州|黄冈市|孝感市|十堰市|咸宁市|黄石市|仙桃市|天门市|随州市|荆门市|潜江市|鄂州市|神农架林区|湖北', 'shanxi2':'太原市|大同市|运城市|长治市|晋城市|忻州市|临汾市|吕梁市|晋中市|阳泉市|朔州市|山西', 'liaoning':'大连市|沈阳市|丹东市|辽阳市|葫芦岛市|锦州市|朝阳市|营口市|鞍山市|抚顺市|阜新市|盘锦市|本溪市|铁岭市|辽宁', 'taiwan':'台北市|高雄市|台中市|新竹市|基隆市|台南市|嘉义市|台湾', 'heilongjiang':'齐齐哈尔市|哈尔滨市|大庆市|佳木斯市|双鸭山市|牡丹江市|鸡西市|黑河市|绥化市|鹤岗市|伊春市|大兴安岭地区|七台河市|黑龙江', 'neimenggu':'赤峰市|包头市|通辽市|呼和浩特市|鄂尔多斯市|乌海市|呼伦贝尔市|兴安盟|巴彦淖尔盟|乌兰察布盟|锡林郭勒盟|阿拉善盟|内蒙古', 'guizhou':'贵阳市|黔东南州|黔南州|遵义市|黔西南州|毕节地区|铜仁地区|安顺市|六盘水市', 'gansu':'兰州市|天水市|庆阳市|武威市|酒泉市|张掖市|陇南地区|白银市|定西地区|平凉市|嘉峪关市|临夏回族自治州|金昌市|甘南州|甘肃', 'qinghai':'西宁市|海西州|海东地区|海北州|果洛州|玉树州|黄南藏族自治州|青海', 'xinjiang':'乌鲁木齐市|伊犁州|昌吉州|石河子市|哈密地区|阿克苏地区|巴音郭楞州|喀什地区|塔城地区|克拉玛依市|和田地区|阿勒泰州|吐鲁番地区|阿拉尔市|博尔塔拉州|五家渠市|克孜勒苏州|图木舒克市|新疆', 'xizang':'拉萨市|山南地区|林芝地区|日喀则地区|阿里地区|昌都地区|那曲地区|西藏', 'jiling':'吉林市|长春市|白山市|延边州|白城市|松原市|辽源市|通化市|四平市|吉林', 'ningxia':'银川市|吴忠市|中卫市|石嘴山市|固原市|宁夏' } numdict = {} for key in citydict : sql = "select count(*) from model where location REGEXP '%s'" % citydict[key] city = cur.execute(sql) num = int(cur.fetchmany(city)[0][0]) numdict[key] = num return render(request, 'area.html',{'jianxi':numdict['jianxi'],'beijin':numdict['beijin'],'guangdong':numdict['guangdong'],'shandong':numdict['shandong'],'jiangsu':numdict['jiangsu'],'henan':numdict['henan'],'shanghai':numdict['shanghai'],'hebei':numdict['hebei'],'zhejiang':numdict['zhejiang'],'shanxi':numdict['shanxi'],'hunan':numdict['hunan'],'chongqing':numdict['chongqing'],'fujian':numdict['fujian'],'tianjin':numdict['tianjin'],'yunnan':numdict['yunnan'],'sichuan':numdict['sichuan'],'guangxi':numdict['guangxi'],'anhui':numdict['anhui'],'hainan':numdict['hainan'],'jiangxi':numdict['jiangxi'],'hubei':numdict['hubei'],'shanxi2':numdict['shanxi2'],'liaoning':numdict['liaoning'],'taiwan':numdict['taiwan'],'heilongjiang':numdict['heilongjiang'],'neimenggu':numdict['neimenggu'],'guizhou':numdict['guizhou'],'gansu':numdict['gansu'],'qinghai':numdict['qinghai'],'xinjiang':numdict['xinjiang'],'xizang':numdict['xizang'],'jiling':numdict['jiling'],'ningxia':numdict['ningxia']})
{% load staticfiles %}Charts demo
{% load staticfiles %}动态数据展示
网站首页:
提交的信息会写入数据库中:
模特年龄正态分布情况:
首先对信息进行分词处理,然后排序,选取出现频率最高的前100个词。
这个花了我很多时间,要解决echarts地图只精确到省或者直辖市,而我爬取到的数据可能是具体的某一个地方市名,针对这个问题:我首先找了一下各省下面的市都有哪些,sql语句使用正则匹配想要获取的信息。我创建了个字典存放省名和下属的市名。另外创建个字典存放省名和匹配到的人数。
简单小结:这里面涉及到的知识点还挺多的:
爬虫:我使用的requests和beautiful这俩库。
数据库:使用的是mysql,涉及到数据库编码,sql查询,模糊匹配,python对数据库的操作,中文显示乱码的问题。
词云:jieba进行分词,pytagcloud用来生成词云。
django:views、templates、static 、url,因为我用的MySQLdb,所以没有使用django自身的ORM(models),这样我觉得更灵活。
前端展示:bootstrap(主要用来做网站的布局)和echarts(进行图表展示和数据分析用)。
转载地址:http://wqida.baihongyu.com/